Search
Mailing List
Back to Top
Fig. 1. The Geoscope within the Museum of the Future’s Observatory, Certain Measures, 2022.
Fig. 1. The Geoscope within the Museum of the Future’s Observatory, Certain Measures, 2022.
World Pictures and Room-Worlds
03/08/2022
AI Diaries, Control Rooms, Fictions, Room Worlds
Andrew Witt

awitt@gsd.harvard.edu
Add to Issue
Read Article: 3821 Words

On December 24, 1968, the three-person crew of lunar spacecraft Apollo 8 became the first humans to witness a shimmering Earth ascend over the barren surface of the moon with their own eyes. The photographs that they took of that “Earthrise” electrified humanity, activating a sense of collective destiny not only between human nations but with Earth itself.[1] This vivid new “world picture” was both more total and more visceral than earlier terrestrial abstractions like globes, atlases or maps. Earthrise was an eidetic portrait of a living, breathing world, an amalgam of the geologic, climatic and biologic, taken from outside the world itself. Historian Benjamin Lazier characterised this meta-Copernican moment as inaugurating an entire “Earthrise era”, a time when the image of a whole and delicate Earth could “organize a myriad of political, moral, scientific, and commercial imaginations”.[2]

In many ways, Apollo’s Earth image was a quintessential product of the space age. Not only did its achievement rely on modern space flight, it played out against the backdrop of global conflicts like the Cold War that exploited space as a proxy battleground. Of course, the space age coincided with the information age, and these two cultural tendencies arguably offered divergent ways to picture the world. If the Apollo photos captured a single static vision of a unified Earth, the information age countertendency was to federate disparate fragments of text, diagrams, images, and video into information-rich dynamic media experiences. Experimental media environments brought visitors inside a closed world of light and image projections, immersing the visitor in choreographed flows of electronic stimuli. The constructed worlds presented within such media environments might resemble, reflect, or subvert the world outside them. Projects like filmmaker Stan VanDerBeek’s Movie Drome or architect Ken Isaacs’ Knowledge Box constructed total media spaces with the visitor at the centre, ensconced in walls saturated by film and slide projections.[3] They effectively constructed mediated worlds within the confines of a single room. Even earlier forays into the mediatic experience of information – notably the Eames Office’s Ovoid Theatre at New York’s 1964 World’s Fair – hinted that the information age would be experienced through choreographed matrices of endless and heterogenous image streams. The spatial array of multiple images induced a relational ordering and systemic framework among them. In these media environments, the world picture was not a single image but an overlapping and federated mosaic, a reality implied through juxtaposition and assembled in the technically-calibrated space of the room-world.

Figure 2 – The Earthrise photograph, taken by Bill Anders on December 1968, from Apollo 8. Image courtesy NASA.

To the extent that they conveyed not the static image of a world picture but rather the dynamic behaviour of a world system, information-age media spaces resembled behavioural models. In his influential lecture “World Pictures and World Models”, German philosopher Hans Blumenberg drew the distinction between world pictures and world models as the “difference between the total notion of nature on the one hand and the purpose assigned to the totality of understanding nature on the other”.[4] By “world picture”, Blumenberg does not exactly intend an Earthrise-like image but rather “that embodiment of reality through which and in which humans recognise themselves, orient their judgements and the goals of their actions, measure their possibilities and necessities, and devise their essential needs”.[5] The world picture thus becomes a metaphysical anchor and compass for the human species in relation to species and nature as a whole. The world model, then, is the end toward which the world might be oriented and perhaps the mechanism that effects its transformation.

This paper considers how the world picture, world model, and room-world interact and resonate in our own time, and how they are transcribed into architectural space. We explore these resonances through a specific project of our office, Certain Measures: The Observatory, an immersive environmental installation housed within Dubai’s new Museum of the Future that imagines a fictional centre for global bioremediation in the year 2071. By situating this project in a wider historical constellation of room-worlds and world pictures, Earth-scale architecture extends its purview to contemporary notions of bioengineering, data visualisation, and artificial intelligence. Moreover, in contrast to canonical room-worlds of the past, the Observatory presents its world picture as a fictional reflection on a possible Earth, rather than as a true image of our world today. In doing so, it orchestrates several overlapping and interlocking layers of worldbuilding: fictional species, fictional media content, and even the fictional bureaucracy in which the Observatory is housed. It diverts the nominally factual media of data visualisation and scientific modelling toward projective worldbuilding. The Observatory thus illustrates the role architects and designers can play as worldbuilders across media, including image, data, narrative, and space.

Room Worlds and Control Rooms

Built to transform the very perception of the future as we know it, Dubai’s new Museum of the Future houses a series of immersive environments that position visitors in an empowering version of tomorrow. The Observatory is one such environment, a fictional centre for planetary ecology staged as a physical and media experience. It is presented as an amalgam of control room, panorama, and incubator for newly designed species, developed to confront the challenges of the climate crisis in a future fiction. It is the culmination of the floor-wide exhibit introducing “the HEAL Institute”, a fictional NGO tasked with gathering the planet’s genetic material, engineering species capable of meeting the challenges of extreme climate, and redeploying these to regreen the world.

The Observatory drew inspiration from the sundry architectures of planetary visualisation of the past century and a half. From building-scale panoramic “great globes” to interactive games of planetary resource use, architectural projects at the scale of the world envisioned designerly ways of seeing, understanding, and shaping Earth. Many of these projects posited not only a particular world picture but a behavioural system for planetary interactions akin to Blumenberg’s world models. In this sense, the Observatory falls into a lineage of architecture that orients design toward a global scale. In surveying the range of world-scale architectural projects, Hashim Sarkis and Rio Salgueiro Barrio point out the “possibility of differentiating between totality and totalization”.[6] The implication is that in the Anthropocene, the systems presented by such world models are not necessarily controlling or coercive, but might be mutually constitutive with Earth itself.

Figure 3 – The Oval room of Teylers Museum as it appeared in the early nineteenth century. Wybrand Hendriks, De Ovale Zaal van Teylers Museum, c. 1800-1820. Image in the public domain.

Beyond the mutuality of system and planet, the form of the Observatory considers the codetermination between a collection of objects and the architecture that displays them. A particularly vivid example of collection-architecture co-determinacy are proto-modern cabinets such as the Oval Room of the Teylers Museum in Haarlem, Netherlands. Historian Geert-Jan Janse describes this singular space as “a room to hold the world”, not merely to house the miscellaneous contents of a world but to construct an architecture fitted to that world picture.[7] Opened in 1784, the Oval Room concentrated its collection into a single space that adopts the organisation of the collection itself, furnishing bespoke cabinetry for irregular objects and reflecting a specific collection taxonomy in its arrangement. The curved space presented no corners, its quasi-elliptical shape evoking the spherical contours of a planet. In this sense it resembled a panorama, a dramatic vista over a field of particulars in orchestrated and interconnected conversation.

Our aim for the Observatory was to extend the architectural type of a Teylers collection panorama with the informatic and multi-scalar view of simultaneous dimensions of planetary ecology. In this way, the historical type of the room world is set in dialogue with the contemporary rise of data science and artificial intelligence. The Observatory accomplishes this by making visible both newly engineered species and the network of human and machinic actors that collect, analyse and act to resuscitate Earth. It is a control room for bioremediation, showing and evolving a web-of-life datascape and the symbiotic interactions of ecosystems, plants, animals, bacteria, robots, and humans.

The Observatory space consists of two complimentary experiences: the Geoscope and the Nursery. The Geoscope is an information-rich global monitoring system that visualises the progress of bespoke species deployed to aid threatened biomes. It combines physical models of speculative species themselves with dynamic projection mapping to show symbiotic interconnections across scales, offering a trans-scalar view of the planet from global to microscopic. The Geoscope could be understood as a dynamic data panorama, or even an informatic world picture. But instead of presenting an instantaneous view of the world from a single perspective at a uniform scale, it presents a temporally unfolding and multi-scalar assemblage of imagery and data, stitched together into a unified sensorium.

Figure 4 – The data visualisations of the Geoscope, tracking the success of species across ecosystems. Certain Measures, 2022.

The Geoscope is not only a collection gallery but also a control room, a cockpit for the planet. As a control room, the Observatory sits adjacent to what anthropologist Shannon Mattern has called “urban dashboards”, or visualisations of real-time urban operations data.[8] When expanded to the room scale, they evolve into what she terms “immersive dashboards”: vast control rooms for city functions that resemble NASA’s Mission Control for spaceflight.[9] Mattern argues that the raison d’être for such rooms is “translating perception into performance, epistemology into ontology”.[10] Urban control rooms thus constitute and condition the subjects that interact with them, creating particular conventions of legibility and action. For Mattern, the “dashboard and its user had to evolve in response to one another”.[11] In the critical relationship between dashboard and intelligibility, a particular data organisation fosters a corresponding kind of intelligence in its observer.

Historian Andrew Toland argues that Mattern’s urban dashboards might naturally be extended to the scale of the planet.[12] “We can begin to imagine an enlargement from the real-time data and feedback loops of urban dashboards considered by Mattern towards a vast integrated and machine-directed system of environmental-sensing and response”.[13] He catalogs several initiatives, such as Microsoft’s “AI for Earth”, that fall comfortably within this genre of design. While he notes the aspiration for an “AI whole Earth dashboard”, Toland frames artificial intelligence in functional terms as a straightforward extrapolation of statistical data analysis. Yet in ethical terms, the idea of AI sentience or reflection – that an AI might come to its own conclusions about the state of the planet – is largely absent. The possibility that the dashboard could become an ethical agent in its own right remains an untested possibility.

Beyond Mattern’s urban dashboards and Toland’s AI for Earth, the Geoscope makes deliberate reference to Buckminster Fuller’s series of geoscopes or “mini-Earth” projects. Beginning from his first room-scale globe, constructed at Cornell University in 1952, through many variants into the 1970s, Fuller proposed augmented planetary models “wherewith humanity can see and read all the spherical data of the Earth’s geography … within the theater of local Universe events”.[14] In their most developed form, Fuller’s geoscopes were data-rich and mediatic portraits of planetary civilisation unfolding over time: “The Geoscope’s electronic computers will store all relevant inventories of world data arranged chronologically, in the order and spacing of discovery, as they have occurred throughout all known history”.[15] Fuller saw the geoscopes as a means to accelerate and intensify the viewing not only of natural phenomena like weather systems and geologic conditions but also of human activity like military deployments or mobility patterns. “With the Geoscope humanity would be able to recognize formerly invisible patterns and thereby to forecast and plan in vastly greater magnitude than before”.[16]

Curiously, Fuller ignored the living organisms within the biosphere except in their direct and extractive connection with agriculture. Thus, in deliberate riposte, our Geoscope sees the human technosphere in intimate dialogue with the biosphere, not as an extractive system but as a symbiotic relationship in which humans have a vital role. The Geoscope’s AI, which acts as an intermediary between technosphere and biospehere, scans specific locations – the Ganges River Delta, Antarctic Inland, the Empty Quarter of the Emirates, Canada’s Nunavut territory and so forth – for progress against climate catastrophe. As a central digital globe turns, it reveals new points of crisis, but also signs of hopeful recovery. It projects a protean and continuously changing view into the network of monitoring stations across the planet. The coordinating AI dynamically connects with a menagerie of human and nonhuman agents across biomes and nations – including drones, satellites and hybrid techno-biological sensors – which constantly collect samples, register progress, and meticulously rebuild the planet. This menagerie of agents complements the biological menagerie of newly-engineered species gestating within the Observatory. The coordinating AI slowly becomes more aware of human culpability for climate change – and its own fraught role in regreening. The Geoscope thus offers a glimpse into the expanding ethical consciousness of this AI.

Experientially, the Geoscope operates like closed-circuit television for the planet. It presents a cluster of video feeds that track the thriving species introduced by the HEAL institute on the one hand and the research of the scientists of the HEAL institute on the other. The myriad seeded species include, for example: a comb jelly super organism that signals danger by bioluminescent flashes; cryptobiotic wildflowers designed to hibernate in steppe and tundra regions; and fire-resistant trees with robust roots to resist infernal heat. At the same time, the Geoscope streams surveillance footage of scientists tirelessly working to enact the techniques of re-greening of the earth. These scientists engage with deployed species through forensic fieldwork and careful labwork. We even witness moments of painstaking analysis as they prepare samples for review of soil toxins, trace carbohydrates, and other critical biomarkers. In effect, this planetary CCTV invites visitors to join in the on-the-ground work of the HEAL institute.

Fig. 5. Examples of the species diorama presented in the Observatory. Certain Measures, 2022.

In the Nursery, the other half of the Observatory experience, visitors peer into incubators nurturing dozens of species that could revitalise a struggling planet. In collaboration with a geneticist, we designed over 80 species of plant, insect and animal, each with special characteristics designed to combat the environmental challenges of today and the future. Drawn from seven major ecosystems – desert, aquatic, arctic, forest, swamp, alpine and grassland – we imagined species such as nutrient jelly cacti, radiation-sequestering flowers, lipid-rich quinoa, and remediation coral designed to feed on microplastics and sequester heavy metals. To facilitate rapid repopulation of bird species, a portable multispecies egg incubator could be used to quickly reestablish biological diversity in previously inhospitable areas. At the microscopic scale, designer bacteria symbiotically support larger species and the broader biome. These bacteria include cancer-hunting and sunscreen-producing varieties, for instance. Enhanced with holographic data, profiles of each specimen reveal to visitors the details of the organism and its role in a remediated Earth.

Fig. 6. A biome incubator pod which combines several species. Certain Measures, 2022.

Like the Observatory itself, the model dioramas representing new species are in conscious dialogue with the dioramas and conventions of natural history museums: each cryptobiological species was meticulously researched, and is complete with a scientific name, specific climate-robust features, and estimated lifecycles. There is an encyclopedic impulse in their collection, an attempt to convey the variety and possibility of nature across its variegated climates. Some dioramas present assembled biomes, habitats in miniature that arrange numerous species in symbiotic constellation. In a sense, the dioramas are not only biological but agricultural: they display the implements and technology of cultivation and accelerated growth, and in this way also echo one of the earliest roles of museum dioramas, to educate on the process of machinic cultivation of nature.[17]

AI Diaries

The posthuman perspective of a sentient AI monitoring Earth in the Observatory raises strange questions about the subjectivity of the AI itself. Is this AI an overlord, servant, friend, or colleague? How would this agent come to terms with climate catastrophe and its role in the rebirth of the planet? How would its ethical consciousness unfold? What role would its human colleagues play in this awakening, and how might it perceive that role? What story would the AI tell about itself?

The logs of the AI’s interactions actually comprise an intimate journal of sorts, a glimpse into its ethical awakening. The AI communicates with the visitor and the network of remote agents through transmissions and messages akin to letters, and the AI is also receiving messages via its sensor network from myriad species – an interspecies communication between natural and artificial life. Taken collectively, these messages bear a surprising resemblance to the venerable literary form of epistolary fiction. An epistolary novel is a story that unfolds entirely through fictional letters, messages, or transmissions between its sundry characters, exposing their intimate thoughts and interpersonal connections. As a literary form, it was notably popular in the eighteenth century. The epistolary form has a particularly interesting connection to technology, science fiction and bioengineering, in that Mary Shelly’s Frankenstein is an epistolary novel. The epistolary form could even extend to electronic and machine-readable messages, such as Carl Steadman’s Two Solitudes, a 1995 novella told entirely through email exchanges.

In keeping with the panoramic nature of the Observatory itself, we combined the content of the epistolary AI novel with the format of a panoramic book, drawing on precedents like Ed Ruscha’s Every Building on the Sunset Strip.[18] While Ruscha constructed a linear panorama of an urban streetscape, we propose a linear panorama of the sequential scan of the entire Earth, including every new bioengineered species introduced to it. The resulting text fuses AI diary and panorama into a journal of exchanges between this AI and its various human interlocutors. This yet-to-be published book, tentatively titled Dispatches from a Verdant Tomorrow, tells the story of climate remediation from a nonhuman perspective, as one continuous scan of Earth’s biosphere.

Fig. 7. A view of the Nursery within the Observatory. Certain Measures, 2022.

A Future Archive of Fictions

In his critique of the globe as an epistemic model, philosopher Peter Sloterdijk distinguishes between the epistemic ramifications of observing the globe from the outside or from the inside. Seeing the globe from the outside – as with the Apollo Earthriseprovides an “all-collecting awareness … the thinker feels and understands what it means to ‘know’ everything, to see everything visible, to recognize everything … the very epitome of objectivity”.[19] In contrast, the interior view places “oneself at the absolute center”, in “ecstatic-circumspective concentricity”: presumably an experience of complete subjectivity.[20] Yet between inside and outside lies the world itself, a moment at which globe and observer are coincident, one embedded in and inhabiting the other. It is that moment of coincidence and embeddedness that the Observatory aims to make tangible.

Historian Benjamin Lazier notes a similar polarity between environment and globe that illustrates how mutually defining they have become:

“The globalization of the world picture is perhaps easier to discern when we consider a parallel slippage – from ‘environment’ to ‘globe’ as it is inscribed in the phrase ‘global environment.’ The term has become a platitude, even a ritual incantation. It is in truth a Frankenstein phrase that sutures together words referring to horizons of incompatible scale and experience. Environments surround us. We live within them. Globes stand before us. We observe and act upon them from without. Globes are things that we make. They are artifacts. Environments, at least in theory and in part, are not.”[21]

The Observatory sits at that threshold between globe and environment, oscillating between the two but also introducing a third possibility: an experience of situated habitation and networked action. Through intersecting practices of speculative design, biofutures, fiction and data visualisation, the Observatory represents a comprehensive simulation of a connected biotechnical ecology.

In their analysis of urban data visualisation installations, Nanna Verhoeff and Karin van Es describe the city as a “navigable archive” and, indeed, one might make the same claim about Earth itself through the instrument of the Observatory.[22] The Observatory is a device not only for measuring and dimensioning a planetary biological archive but also for cultivating new specimens and Earth itself as an organism. It is a staging area for an active engagement between myriad human and nonhuman actors with each other and Earth itself. It is the terminus of a planetary-scale nervous system but also a sentient agent of action. It is a medium of communication with the planet, a telephone to Earth, a device for engaging in dialogue with it and its inhabitants. The Observatory is a proving ground for a more humane humanity, a tool through which we might take stock of the future of Earth and of design itself.

References

[1] R. Poole, Earthrise: How Man First Saw the Earth (New Haven: Yale University Press, 2010).

[2] B. Lazier, “Earthrise; or, The Globalization of the World Picture,” American Historical Review, June 2011, 606.

[3] G. Sutton, The Experience Machine: Stan VanDerBeek’s Movie-Drome and Expanded Cinema (Cambridge: MIT Press, 2015).

[4] H. Blumenberg, “World Pictures and World Models,” in History, Metaphors, Fables: A Hans Blumenberg Reader, Kroll, Joe Paul, Fuchs, Florian, Bajohr, Hannes, eds. (Ithica: Cornell University Press,2020), 43.

[5] Ibid., 43.

[6] H. Sarkis, Roi Salgueiro Barrio and Gabriel Kozlowski, The World as an Architectural Project (Cambridge: MIT Press), 8.

[7] G-J Janse, A Room to Hold the World. The Oval Room at Teylers Museum (Amsterdam: Teylers Museum, 2011)

[8] S. Mattern, “Mission Control: A History of the Urban Dashboard”, Places Journal, March 2015, <https://doi.org/10.22269/150309>, accessed 09 June 2022.

[9] Ibid.

[10] Ibid.

[11] Ibid.

[12] A. Toland, The Learning Machine and the Spaceship in the Garden. AI and the design of planetary ‘nature’ RA. Revista de Arquitectura Núm. 20 (2018), 216–227

[13] Ibid., 225.

[14] R. Buckminster Fuller, The Critical Path (New York: St. Martin’s Press, 1981), 172.

[15] Ibid., 180.

[16] Ibid., 183.

[17] J. Insley, “Little Landscapes: Agriculture, Dioramas, and the Science Museum,” Icon, 12 (2006): 8.

[18] E. Ruscha, Every Building on the Sunset Strip (Los Angeles: E. Ruscha, 1966).

[19] P. Sloterdijk, Spheres Volume 2: Globes (Pasadena: Semiotext(e), 2014), 85.

[20] Ibid., 88.

[21] B. Lazier, “Earthrise; or, The Globalization of the World Picture,” American Historical Review, June 2011, 614-615.

[22] N. Verhoeff and K. van Es, “Situated Installations for Urban Data Visualization: Interfacing the Archive-City”, in Visualizing the Street: New Practices of Documenting, Navigating and Imagining the City, P. Dibazar and J. Naeff, eds (Amsterdam: Amsterdam UP, 2018).

Suggest a Tag for this Article